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wonderful places such as Texas. I am really happy to see that a single mathematician 
in Brazil can generate gigantic waves all around the world, significantly expanding 
our philosophical and mathematical view of the world around us.

Jacob Palis: 
Dynamical Systems. Chaotic Behaviour – Uncertainty

Thank you, Etienne Ghys for such kind words. I would also like to thank the Balzan 
Foundation and the General Prize Committee for bestowing upon me this great hon-
our and at the same time the Accademia Nazionale dei Lincei for recently conferring 
upon me membership.
I am very happy to be here with my family, including my wife, my children and my 
6-year-old grandson.
Despite the fact that I will deal with Chaos and Uncertainty, my lecture will contain 
a positive message.
Although the theory of dynamics can be traced back to the Greeks or even beyond, we 
attribute to the great French mathematician Henri Poincaré the creation, in the second 
half of the nineteenth century, of the modern theory of dynamical systems. 
Here we understand dynamical systems as flows or transformations in a space of 
events, or phase space, that we take to be a compact surface of any dimension without 
boundary. We shall assume that the flows and the transformations are at least C1, that 
is, continuously differentiable and that the transformations are inverse with the same 
such property, that is, they are diffeomorphisms. In general, we say that the dynamical 
system, diffeomorphism or flow, is of class Cr, r a positive integer, if it is r-continuous-
ly differentiable. Such systems represent one of the main mathematical instruments 
used to model the evolution of many phenomena in nature and, more broadly, in other 
areas of science, through transformations of a space of events into itself or through 
differential equations that generate flows on the phase space. 
Classical examples are population growth of species and weather and climate predic-
tion; perhaps the same theory can be applied to understand certain aspects of turbu-
lence and other important phenomena. From a set of initial data, or a point in the space 
of events, we apply the model many times in the case of transformations or for a long 
time when using differential equations: in both cases, we name trajectories the set of 
iterates from an initial point. If, starting at two very close initial points, behaviour of 
the trajectories over a long timeframe vary substantially, we call this system chaotic. 
This is the case for many systems, and in fact uncertainty is very common in phenom-
ena in nature and beyond. 
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The well-known 1963 Lorenz model for weather prediction consists of a flow in three 
dimensions displaying an invariant butterfly-like figure that attracts all trajectories 
starting at points near it – the so called Lorenz butterfly-like attractor. Moreover, if 
we consider very close initial points, it is, very likely that, after a long period of time, 
the trajectories will be further apart as much as the maximum distance between any 
two points in the butterfly figure, that is, the diameter of the butterfly figure. Thus, we 
have uncertainty about the future behaviour of the trajectories, which in this case is 
measured by the diameter of the butterfly. Dynamical systems with similar behaviour 
are called chaotic.

Moreover, the Lorenz model is robust from a mathematical point of view: if we 
change slightly the numbers (coefficients) that appear in the equations of the model, 
we still have a similar butterfly-like figure attracting the future trajectories starting 
at nearby points. See reference [BDV]. To be chaotic is not such a rare phenomenon 
among dynamical systems: the exception is when the attracting figures for the future 
trajectories consist of a finite number of points or periodic trajectories. 
Concerning attractors other than hyperbolic ones, two of them have been most re-
markable and they have influenced the development of dynamics from the 1970s on. 
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The first one is the Lorenz attractor, that we have just briefly commented on, the other 
one is due to Hénon. It should be added that, like Hénon, Jakobson exhibited new at-
tractors for parametrized families of unimodal maps of the interval that are probability 
persistent, but not robust, under a small perturbation of the parameter. Benedicks and 
Carleson showed the existence of Hénon-like attractors. Making use of their results, 
Mora and Viana proved that they appear in homoclinic bifurcations.

Curiously, many dynamicists were not aware of Lorenz’s work when I first came to 
the University of California at Berkeley, in 1964, after graduating from the School of 
Engineering of the University of Brazil, now known as the Federal University of Rio 
de Janeiro. The main focus was on hyperbolic systems, as I will discuss in the follow-
ing text, and they did not include the robust case of the Lorenz attractor.
My first contribution to the area started precisely with dynamical systems displaying 
a discrete set of fixed or periodic orbits, or more precisely with the so-called Morse-
Smale systems. Smale was my adviser at the University of California at Berkeley. At the 
time, much emphasis was given to the set of hyperbolic systems, and the Morse-Smale 
systems were part of such a set. In simple terms, a system is hyperbolic if along its tra-
jectories distances increase and decrease exponentially in complementary dimensions, 
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or in complementary dimensions transversally to flow trajectories. More formally, let 
M be the phase space and f a transformation on it. A point x in M is called nonwander-
ing if in any neighbourhood V of x, we can find a point y such that fn(y) is in V for some 
interger n. The union of all nonwandering points is called the nonwandering set of f, 
Ω(f). Similarly for flows. Indeed, we say that f or the flow Xt, t a real number, is hyper-
bolic if Ω(f), or Ω(Xt), is hyperbolic. Weaker, but still very relevant, are the concepts 
of partial hyperbolicity and dominated splitting that again describes the relative growth 
of distances along trajectories in complementary or sub-complementary dimensions.
It is suggested that the reader consult (BDV) for a comprehensive presentation of 
basic concepts and definitions that appear here.
Under the hyperbolicity hypothesis, through each point x in Ω, we have a stable line 
or plane formed by points whose trajectories follow and approach the trajectory of x, 
which is called the stable manifold of x. There is a dual concept of unstable manifold. 
Also for flows we can give similar definitions. If Ω(f) is hyperbolic and the periodic 
points of f are dense in Ω(f), we say that f satisfies Axiom A. Finally, we can impose 
the transversality condition: for every pair x, y of points in Ω(f) the stable manifold of 
x is transversal to the unstable manifold of y. In the particular case that Ω(f) is made of 
a finite number of fixed or periodic orbits, we call f a Morse-Smale diffeomorphism. 
Similarly for a Morse-Smale flow.
In my PhD thesis in 1967, I proved that Morse-Smale systems, diffeomorphisms or 
flows, are structurally stable in low dimensions, up to and including three. That is, given a 
Morse-Smale diffeomorphism f, for any g r-differentiably close to f (Cr close, r ≥ 1), there 
is a continuous one to one transformation h of M, such that h(f(x)) = g(h(x)). From that, 
it follows that h(fn(x)) = gn(h(x)), that is, h sends orbits of f into orbits of g. In other 
words, the orbit structure of Morse-Smale diffeomorphisms or flows are unchanged by 
small perturbations of the systems: they are structurally stable.
Earlier work by Andronov-Pontryagin and Peixoto considered the case of flows on a 
disc and on surfaces, respectively.
I had to go beyond that to treat the case of diffeomorphisms in two and three di-
mensions and flows in this latter case. To do so, I have created the notion of stable 
foliations being partially subfoliated to include the ones of fixed or periodic points of 
higher indices where they accumulate upon. This notion has fundamentally influenced 
the subsequent development in this line of research.
Right after that, in a joint work with Smale, the results of my thesis were extended to 
all dimensions.
We also formulated conjectures that became quite famous, namely the Stability Con-
jectures, that proposed precise conditions for a dynamical system to be structurally 
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stable or stable restricted to the nonwandering set. These conjectures were a major 
topic of research in the area for more than two decades.
To formulate them, we note that when f satisfies Axiom A, Ω(f) splits into a finite number 
of disjoint (compact) pieces Ωi, 1 ≤ i ≤ n, each of them displaying a dense orbit, i.e., it is 
transitive, as proved by Smale. They are called basic sets for f. A k-cycle on Ω = Ω (f), k 
≥ 1, is a sequence of basic sets Ω0, Ω1, …, Ωk+1 = Ω0 (re-ordering indices if necessary) and 
points x1, x2, …, xk outside Ω, such that the negative orbit of xi accumulates on Ωi−1 and its 
positive orbit on Ωi.
The Stability Conjectures state that a Cr diffeomorphisms f is structurally stable if and 
only if Ω(f) is hyperbolic and the transversality condition holds, and f is Ω-stable if 
and only if Ω(f) is hyperbolic with no cycles.
I proved that the non-cycle condition was necessary for Ω-stability of f, if Ω(f) is hy-
perbolic. This helped motivating the conjectures on stability. Besides the case of Morse-
Smale systems dealt with by Palis-Smale, other fundamental contributions were given by 
Anosov in the 1960s and in the early 1970s by Robbin, Robinson and de Melo in his PhD 
thesis, the first one under my supervision at IMPA. A final solution in the C1 category for 
diffeomorphisms was brilliantly obtained by Mañé, also my former PhD student in the 
early 1970s. I have completed the work of Mañé in the case of the stability restricted to the 
nonwandering set. The case of flows was later treated by Hayashi following Mañé’s work.
I should say that I still remember with some emotion my first encounter with René 
Thom, a great French mathematician and a Fields Medalist like Steve Smale. It was 
in a meeting in Seattle in August of 1967. He was very interested in the proof of the 
structural stability of Morse-Smale systems, including the new ideas used to do so.
All the works above were published in outstanding journals such as the Annals of 
Mathematics, Publications Mathématiques de l’Institut des Hautes Etudes Scienti-
fiques, Inventiones Mathematicae, Global Analysis - American Mathematical Society.
After the conclusion of my PhD degree in September 1967, I visited a number of 
institutions on the East Coast of the United States, especially Brown University, and 
also MIT, for about six months. Then I returned to Berkeley for another period of six 
months as an Assistant Professor. At this point, I started shifting somewhat my inter-
est in dynamics in terms of strategy, motivated by reading more intensively the work 
of Poincaré.
A strong motivation to go back to Berkeley was to once again enjoy its scientific at-
mosphere, although I had already decided to soon return to Brazil. Also, I wanted to 
participate in an important meeting to take place there in July 1968 on Global Analy-
sis, including Dynamical Systems. S.S. Chern, a famous geometer, and Steve Smale 
would be the scientific coordinators.
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I was invited to speak twice on my joint work with Smale, which I took as a special 
and very stimulating sign of appreciation. And I had a chance to become acquainted 
with many outstanding mathematicians, among them Jürgen Moser, with whom I 
would interact for the next three decades, most particularly at ETH-Zurich.
On the one hand, I continued to work on the hyperbolic theory of dynamics, as in my 
joint work with Hirsch, Pugh and Shub on stable manifolds of basic sets, published 
in Inventiones Mathematicae in 1971 and with Newhouse, published by Academic 
Press, a volume edited by Peixoto, in 1973.
On the other, I kept in mind the major challenge of providing a description of the 
“typical” behaviour of trajectories of a “typical” dynamical system.
Let me say that Poincaré was perhaps the first to set out in this direction. A serious 
attempt was made by Smale in the early sixties, when he introduced and proposed 
the hyperbolic systems as “typical”. However, a few years later himself and Abraham 
provided a counter-example, followed by many others.
I was particularly impressed in 1968 with Newhouse’s demonstration that hyperbolic-
ity is not dense even on the two dimensional sphere for twice differentiable dynamical 
systems. He discovered it through a bifurcation of a Poincaré cycle, in this case of a 
homoclinic tangency, which we shall again discuss later.
Some twenty-five years later Newhouse’s result was remarkably generalized to all 
dimensions by Viana and myself. I shall go back to this point later.
While I maintained significant interest in stability of orbit structure (structural sta-
bility), I moved to bifurcation theory, which concerns changes in orbit structure of 
systems depending on one or more parameters.
Following this line of research, I published, with Newhouse, “Bifurcations of Morse-
Smale Systems” in 1973 in the volume by Academic Press mentioned above and 
“Cycles and Bifurcation Theory” in 1976 in Astérisque, vol. 31. We have shown the 
existence of simple bifurcations, as well as the ones leading to infinitely many differ-
ent types of orbit structure related to the creation and unfolding of cycles. We have 
considerably extended Sotomayor’s work for flows on two-dimensional surfaces.
To top all this off, Newhouse, myself and Takens published a long article in Publica-
tions Mathématiques de l’IHES, vol. 57. It may be considered a classic in this line of 
research. We have characterized stable arcs of dynamical systems whose limit sets 
consist of finitely many orbits. Models for the unfolding of the bifurcating periodic 
orbits were established, as well as moduli of stability related to saddle-connections 
and several results on the dynamical structure of the bifurcating diffeomorphisms.
I had a brief, but very interesting, incursion into holomorphic dynamics in a paper writ-
ten jointly with Camacho and Kuiper, which appeared in Publications Mathématiques 
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de l’IHES, vol. 48. It started with some differentiable invariants of topological conjuga-
cies that I exposed during my invited discussion at the International Congress of Math-
ematicians in Helsinki, 1978. It helped the authors to classify linear holomorphic flows.
The International Congresses of Mathematicians are held every four years by the In-
ternational Mathematical Union. It is an important distinction to be invited to speak at 
one of them. The title of my talk was “Moduli of Stability and Bifurcation Theory”. 
By the end of 1970s, Wellington de Melo and myself wrote an introductory book called 
Geometric Theory of Dynamical Systems. It first appeared in Portuguese as Notes of the 
Brazilian Mathematical Colloquium and then in the collection Projeto Euclides of the 
Institute for Pure and Applied Mathematics - IMPA. It was translated into English by 
A. Manning and published by Springer Verlag. It was translated into Russian under the 
direction of D. Anosov and later also into Chinese. These became standard university 
texts worldwide and we are constantly inundated with requests for new editions. 
Continuing with my research contribution to Dynamical Systems, I still pursued with 
Takens and later Dias Carneiro a classic question by René Thom, on the stability and bi-
furcation of parametrized families of gradient vector fields for one or more parameters. 
This was a charming question but a very difficult one, with a complicated interplay 
between dynamics and singularity theory. Thom had in mind applications to Biology.
Takens and myself proved that the stable one-parameter families of gradients are open 
and dense. The work was published in the Annals of Mathematics, vol. 118.
It was very rewarding to see the power of the geometric method, which I introduced 
in my PhD thesis some fifteen years before, as a main ingredient in this much more 
sophisticated question.
Some years later, in a work mixing techniques of my previous work with Takens and 
singularity theory, Dias Carneiro and myself proved the same result for two-parameter 
families of gradients: the stable ones are open and dense. It was a long paper published in 
Publications Mathématiques de l’IHES, vol. 70, one of the finest journals in mathematics.
In the middle of the 1980s, I started my collaboration with Jean-Christophe Yoccoz, 
a very talented young mathematician. In a series of articles that appeared in the An-
nales Scientifiques de l’Ecole Normale Supérieure, vol. 116, and the Bulletin of the 
Brazilian Mathematical Society, vol. 2, new series, we solved the centralizer problem 
for open and dense subsets of many classes of hyperbolic dynamical systems, that is, 
they commute only with their own powers.
Yoccoz was awarded the Fields Medal in 1994. In the laudation ceremony where 
he was presented with the award, our joint work on centralizers was explicitly men-
tioned, as well as our work on homoclinic bifurcations, to be briefly described below.
I turn now to another fundamental phenomenon for parametrized families of dynam-
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ics: the unfolding of homoclinic tangencies. As Poincaré predicted, this is at the heart 
of the difficult problems in dynamics. In recent decades, after the remarkable work of 
Newhouse on the existence of infinitely many simultaneous sinks, we have improved 
our knowledge very much of what such a bifurcation may impose on the dynamics.
I believe that I have substantially contributed to that, either directly or by asking the 
right questions to be considered. In particular, I explicitly put homoclinic tangencies 
as well as heterodimensional cycles at the centre of a global understanding of dynam-
ics: the description of the typical orbit of a typical dynamical system.
In a sense, I have not forgotten Poincaré’s sentence that I have quoted above.

In fact, in my previously mentioned works with Newhouse or Takens or both, we have 
dealt with homoclinic bifurcations. Now, I wish to focus on how often a hyperbolic 
system undergoing a homoclinic bifurcation remains hyperbolic very near the unfold-
ing parameter value, at least on surfaces. (Here, to simplify the language, I am calling 
hyperbolic a system whose nonwandering set is hyperbolic, with a dense subset of 
periodic orbits, and satisfying the strong transversality condition.)
The answer depends on the Hausdorff dimension of the system, which is the sum of 
the Hausdorff dimensions (fractal dimensions) of the stable and unstable foliations. 
If it is smaller than one, we have total prevalence of hyperbolicity. A weak version 
of this fact appeared in a previous work with Newhouse. The final version, including 
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how a homoclinic tangency can be created, appeared in two works by myself and Tak-
ens. The first one in Inventiones Mathematicae, vol. 82, and the second in the Annals 
of Mathematics, vol. 125.
In fact, I have conjectured that this result would not be true if the Hausdorff dimension as 
above is bigger than one. So, one side of the conjecture was still missing. 
A strong indication that my conjecture was true was provided in my long paper with Yoc-
coz, “Homoclinic Tangencies for Hyperbolic Sets of Large Hausdorff Dimension”, pub-
lished in the famous journal Acta Mathematica, vol. 172. An even stronger indication was 
produced by Yoccoz and myself in the paper “On the Arithmetic Sum of Regular Cantor 
Sets”, published in the Annales de l’Institut Henri Poincaré, Analyse Non Linéaire, vol. 14.
The question was finally solved by Moreira, one of my former students, and Yoccoz, 
for hyperbolic systems on surfaces, in a wonderful work published in the Annals of 
Mathematics, vol. 154. 
Moreira, Viana and myself are now proving that the conjecture is indeed true in gen-
eral, that is, in all dimensions.
At this point, as promised before, we shall mention the work by Newhouse on the 
unfolding of homoclinic tangencies on surfaces to show that, among C2 diffeomor-
phisms, the hyperbolic ones are not dense. So, in other words, the hyperbolic dif-
feomorphisms are not typical, once again disproving Smale’s global conjecture. He 
had done so, showing that close to the bifurcating parameter value, there are, in the 
parameter line, small intervals with the following property: in any of them there is a 
dense set of points for which the corresponding diffeomorphisms display infinitely 
many simultaneous attractors (sinks). This fact contradicts hyperbolicity.
Viana and myself proved that the same is true in all dimensions. This work “High 
Dimension Diffeomorphisms Displaying Infinitely Many Periodic Attractors” was 
published in the Annals of Mathematics, vol. 140.
The work we carried out on the unfolding of homoclinic tangencies, as well as Smale’s 
on horseshoes arising from transversal homoclinic orbits, up to 1993, appeared in a book 
by myself and Takens, published by Cambridge University Press, called Hyperbolicity 
and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Again, this book had large 
repercussions. Indeed, it was at the time considered the definitive work on the subject.
I must say that this was not to be the last word, since just a few months ago the very 
prestigious journal Publications Mathématiques de l’IHES dedicated a whole issue, 
217 pages, volume 110, to a work done by Yoccoz and myself [PY], entitled “Non-
Uniformly Hyperbolic Horseshoes Arising from Bifurcations of Poincaré Heteroclinic 
Cycles”. In it, we deal with one-parameter families of surface diffeomorphisms that are 
initially hyperbolic and then go through a heteroclinic tangency. We expected all the 
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results in the paper to also be true, substituting heteroclinic by homoclinic tangency.
Moreover, we believe that the several mathematical structures created and developed in the 
paper should be of much use in the solution of other, perhaps many, questions in dynamics.
We show, among other facts, that even if the Hausdorff dimension of the diffeomor-
phisms in the family just prior to the bifurcating parameter is bigger than one, but not 
much bigger, then, we have prevalence of no-attractor, although we have no prevalence 
of hyperbolicity. Indeed, I have conjectured that the set of parameter values correspond-
ing to infinitely many coexisting attractors shall have zero measure (Lebesgue).
That was a key point in my proposal, often referred to as the Palis global conjecture 
or programme: a description of the “typical” behaviour of trajectories for “typical” 
dynamical systems. This I will now present [PI], [PII]:

Main Conjecture

(A1) Every system can be Cr, r ≥ 1, approximated by one displaying only finitely 
many attractors. Such attractors should support a Sinai-Ruelle-Bowen (SRB) invari-
ant measure and the union of their basins of attraction should be of total probability 
(Lebesgue) in the phase space.

(A2) The attractors are stochastically stable.

(A3) For generic (non-degenerate) 
parametrized families with fi-
nitely many parameters, the sys-
tems with the properties presented 
above have total probability (Leb-
esgue) in the parameter space.

We notice that, if the Main Con-
jecture is true, it would be possi-
ble to convey a precise sense of 
uncertainty for a typical dynam-
ics. Indeed, a typical dynamics 
would display only a finite num-
ber of attractors and the uncer-
tainty of the future behaviour of 
its trajectories would be meas-
ured by the maximal value of 
the diameters of the attractors.
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A Supporting Conjecture
Any dynamical system can be Cr, r ≥ 1, approximated by a hyperbolic one with the 
no-cycle property or by one exhibiting homoclinic tangencies or heterodimensional 
cycles.
There is a similar Main Conjecture for flows. The corresponding supporting conjec-
ture requires the notion of singular cycles: they are cycles involving at least one sin-
gularity. Then the supporting conjecture would state:

Supporting Conjecture for Flows
In any dimension, every flow can be Cr, r ≥ 1, can be approximated by a hyperbolic 
one or by one displaying a homoclinic tangency or a singular cycle or a heterodimen-
sional cycle.
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tors, Astérisque No. 261, 335–347, 2000.
[PII] J. Palis, A global perspective for non-conservative dynamics, Annales de l’Institut Henri 
Poincaré, vol. 22, 485–507, 2005.
[PY] J. Palis and J.-C. Yoccoz, Non-uniformly hyperbolic horseshoes arising from bifurcations 
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Alberto Quadrio Curzio:
Thank you, Jacob Palis, for your precise presentation. 
I would now like to invite Carlo Sbordone, Professor of Analytical Mathematics at 
the University of Naples Federico II and a member of the Accademia Nazionale dei 
Lincei, to respond to Professor Palis’s presentation.

Comments, Questions and Preliminary Discussion

Carlo Sbordone:
I am honoured to be here, but it is not easy to be a discussant on a mathematical 
subject when there is a general audience and not a specialist one. However, I will try 
to adequately simplify the most difficult concepts. First I would like to say that we 
mathematicians are all impressed by your recently proposed comprehensive set of 




